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Abstract
We investigate the phase diagram of the half-filled one-dimensional t–U–J
model by the level-spectroscopy method. Due to the competition between the
Coulomb repulsion U and the antiferromagnetic exchange J , the backward
scattering may change sign from repulsive to attractive, leading to spin-gap
instability. From the excitation spectra of finite-size clusters, the transition line
Uc(J ) can be accurately determined in the weak-coupling and intermediate-
coupling regimes. With increasing J , Uc(J ) deviates from that given by
the weak-coupling theory based on the spin–charge separation hypothesis.
Moreover, we find that the spin gap vanishes robustly when U � 0.35t ,
irrespective of J .

The quantum states of an electron liquid with unbroken spin-rotational symmetry are of
particular interest in strongly correlated electron systems, especially in high-temperature
cuprate superconductors. Anderson [1] first proposed the idea of the resonating valence bond
(RVB) state as such a characteristic spin liquid for the correlated electrons in the 2D Cu–O
plane. Recently, Laughlin [2] suggested that a gossamer superconducting state can arise from
an antiferromagnetic Mott insulator if double occupation is allowed. Zhang [3] showed further
that the gossamer superconducting state can evolve smoothly into the RVB spin-liquid phase
in a 2D t–U–J model. It is remarkable that, as the basic feature of doped RVB states, the spin–
charge separation is well established only in 1D systems so far, and the superconductivity may
take place if the spin excitations have an energy gap. It is widely accepted that in 1D a symmetry
preserving gapped spin-liquid phase is possible in Haldane spin chains [4], while in other cases
its appearance needs spin rotational symmetry breaking, translational symmetry breaking (or
explicit dimerizations), inter-chain couplings, or other kinds of explicit frustration. For 1D
itinerant electron systems, though Oshikawa showed that a finite excitation gap is possible if
the particle number per unit cell is an integer [5], few 1D systems composed of a pure single
chain which respect all the desired symmetries and without explicit frustrations are known to
exhibit gapped spin-liquid states at half-filling.
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Recently, based mainly on analytical bosonization and numerical transfer matrix-
renormalization group methods, it has been found that such a spin-liquid phase is indeed
realized in a half-filled itinerant electron system described by the one-dimensional t–U–J
model [6].

H = −t
∑
iσ

(
c†

iσ ci+1 σ + h.c.
)

+ U
∑

i

ni↑ni↓ + J
∑

i

Si · Si+1. (1)

When J is anisotropic, i.e., spin-rotational SU(2) symmetry is broken to U(1), the
corresponding model was studied by Japaridze et al in the large-bandwidth limit [7]. They
predicted a transition to the dimerized ordering phase in the case of weak anisotropy by
assuming spin–charge separation in the weak-coupling regime. However, except in the
weak-coupling regime and a special point J ∼ t in the intermediate-coupling regime [6],
the existence of a gapped spin-liquid phase (with spontaneous dimerization) in the isotropic
antiferromagnetic case in the intermediate- and strong-coupling regimes has not been clarified.
Notice that a similar spin-liquid state, characterized by the bond-charge-densitywave (BCDW)
or spontaneous dimerization, was discovered in the conventional extended Hubbard model
(EHM) with the nearest-neighbour Coulomb repulsion [8–10] or in the ionic Hubbard model
with alternative potential [11], where its existence is due to the interplay of the bond insulator
characterized by the charge-density wave (CDW) and the Mott insulator characterized by the
spin-density wave (SDW). The two competing insulating phases exist even in the atomic limit.
However, the gapped spin-liquid phase in the t–U–J model is quite unusual. One expects that
it develops in the intermediate regime and vanishes at either free or atomic limits inside the
Mott insulator [6]. It is interesting to clarify the generic feature of the boundary line between
the spin-gapless (SDW) and gapped (BCDW) states in the Mott insulating phase of this model.

In this paper, we shall show further numerical evidence for the existence of the gapped
spin-liquid phase and determine the generic phase diagram of the t–U–J model by the level-
spectroscopy method. It is known that though the spin-gap transition can be analysed by the
weak-coupling theory based on the bosonization and renormalization group (RG), its validity
is ensured only in the weak-coupling limit [12–15]. On the other hand, direct numerical
calculation of the gap based on the conventional finite-size scaling method is very difficult,
since the gap opens very slowly near the critical point. Instead of direct evaluation of the
gap, the level-spectroscopy method investigates the ground-state phase diagram by using the
excitation spectra of finite-size clusters [8, 16, 17]. By taking into account the logarithmic
corrections to the Tomonaga–Luttinger liquid (TLL) from the backward scattering, its validity
is ensured in both the weak- and intermediate-coupling regimes. This method was initiated by
Julien and Haldane [16] and extensively developed by Nomura and Okamoto [17] in the study
of the S = 1/2 frustrated spin chains, and has been also successfully applied to 1D electron
systems by Nakamura et al [8, 18]. Here, by using this method, we investigate the phase
diagram of the t–U–J model from the data of the excitation spectra of finite-size clusters.
The obtained transition line Uc(J ) is in good agreement in the weak-coupling regime with
the weak-coupling theory. With increasing J in the intermediate-coupling regimes, Uc(J )
deviates from the weak-coupling prediction, showing the significant spin–charge coupling
effects. Moreover, we find that the spin gap vanishes robustly when U � 0.35t irrespective of
J .

Let us first briefly describe the spin-gap scenario in the weak-coupling theory based on the
bosonization and RG [12–15]. The electron operator c j,σ is described by continuous fermion
fields expanded at the two Fermi points

c j,σ ≈ ψL,σ (x)e
−ikF x + ψR,σ (x)e

ikF x . (2)
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The low-energy excitations are then described by the charge and spin bosonic fields through
the U(1) representation

ψr,σ = 1√
2πa

ei
√
π/2[r(φc+σφs)−(θc+σθs)] (3)

where a is a short-distance cut-off (lattice constant) and r and σ in the rhs refer to +/− for
right/left and up/down fields respectively. The fieldφν and the dual field θν of the charge (ν = c)
and spin (ν = s) sectors satisfy the relation [φν(x), θν′(x ′)] = −iπδνν′ sgn(x − x ′)/2. Then
the effective low-energy Hamiltonian density is given by

H = Hc + Hs + Hcs, (4)

Hν = vν

2π
[Kν(∂xθν)

2 + K −1
ν (∂xφν)

2] +
gν

2π2a
cos

√
8πφν, (5)

Hcs = − gcs

2π2a
cos

√
8πφc cos

√
8πφs . (6)

The parameters Kν and vν are the Gaussian coupling and the velocity of the elementary
excitations, respectively. The other three couplings describe the non-TLL-type processes: the
umklapp scattering (gc = −g3⊥), the backward scattering (gs = g1⊥), and the spin–charge
coupling (gcs = g3‖). Notice that for the charge sector Kc = [1 + (U + 3J/2)/π t]−1/2 < 1
while for the spin sector Ks is renormalized as Ks = 1, keeping the SU(2)-spin rotational
symmetry.

According to the RG argument, the energy scale of Hcs is large than those of others, this
term can be neglected in the weak-coupling regime so that spin–charge separation occurs. For
the charge sector, the RG equation predicts that the Gaussian fixed line gc = 0 is stable for
gc � 0, but unstable for gc < 0. Because the initial value is given by gc = U + 3J/2 > 0
in the t–U–J model, so the charge gap opens. Similarly, for the spin sector, the RG equation
predicts a spin gap when the initial gs = U − J/2 < 0. So in the weak-coupling regime of
the half-filled t–U–J model, there is a finite gap in charge excitations for all positive U and J ,
while there is a finite gap in spin excitations for J > U/2. However, with increasing J from
the weak- to intermediate-coupling regime, the spin–charge coupling becomes less irrelevant,
so that Hcs cannot be neglected. By taking into account this coupling, the corresponding RG
equations have been solved and it has been found that the phase boundary deviates significantly
below the line J = U/2 [6].

Of course, the above RG description on the phase transition is restricted in the weak-
coupling regime, though it is also often expected to be applicable qualitatively in part of
the intermediate regime. To determine the phase transition boundary in a wider regime
quantitatively, we use the Lanczos algorithm to diagonalize finite-size clusters and analysis
the data by the level-spectroscopy method. Based on the TLL theory (equivalent to c = 1
conformal field theory), the level-spectroscopy method considers the renormalization of the
Umklapp and backward scatterings as well as their logarithmic corrections [8].

In the absence of the non-linear terms (gc = gs = gcs = 0), the system is exactly solvable;
the excitation spectra are determined by quantum numbers nν and mν , respectively, where nν
denotes excitations involving the variation of particle numbers in sector ν (=c, s) and mν

denotes the corresponding current excitations (from left Fermi to right Fermi points). For a
given excitation in the ν-sector, define the scaling dimension xν = 1

2 (
nν2

Kν
+ m2

νKν) and the
conformal spin sν = nνmν respectively; the excitation spectra and their wavenumbers are then
given by

	E = 2πvc

L
xc +

2πvs

L
xs, (7)

k = 2π

L
(sc + ss) + 2mckF (8)
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with L and kF = πN/2L being the length of the system and the Fermi wavenumber
respectively.

Now assume that the excitations move adiabatically when the non-linear terms are added
to the system. The conformal field theory [19, 20] says that there is a (perturbation) operator
O(r)with scaling dimensions xν which changes the ground-state energy to the excited one with
the same scaling dimensions, i.e., there is one to one correspondence between the excitation
spectra and the operator:

〈O(r)O(r ′)〉 ∼| r − r ′ |−2(xc +xs ) . (9)

The operators corresponding to the excited states are given by

Onν ,mν
∝ ei

√
2(nνθν+mνφν). (10)

In our analysis we shall focus on the excitation spectra which correspond to the following
operators:

O1 ≡ √
2 cos

√
2φs (11)

O2 ≡ √
2 sin

√
2φs (12)

O3 ≡ √
2e±i

√
2φs (13)

relating the singlet (O1) and triplet (O2, O3) states. Upon spin–charge separation, their
scaling dimensions in the gapless phase are 1/2 for the infinite system, but split each other
logarithmically for a finite-size system as follows:

xσ1 = 1

2
+

3

4

y

y ln L + 1
(14)

xσ2 = xσ3 = 1

2
− 1

4

y

y ln L + 1
(15)

with y = gs/πvs . At the critical point (the fixed point y = 0) there are no logarithmic
correction in the excitation gap. Therefore, the level crossing of	Eσ,1 and	Eσ,3 excitations
serves as a good estimator for the spin-gap transition, even in the case when the scaling
dimensions deviate from equations (14) and (15) with increasing spin–charge couplings.

To numerically identify the excitation spectra, the discrete symmetries of the
wavefunctions for the excited states are useful and are specified by those of the ground state and
the operators. The discrete symmetry operations are particle–hole (C), c jσ ↔ (−1) j c†

jσ ; space
inversion (P), c jσ ↔ cL− j+1σ ; and spin reversal (T ), c jσ ↔ c j−σ ; see table 1 in [8]. Here,
P = T = 1 for the singlet state and P = T = −1 for the triplet state. We diagonalize
the systems with L = 10, 12, and 14, where the Lanczos algorithm was used to obtain
eigenvalues of the Hamiltonian in the corresponding subspaces. At half-filling, the (anti-)
periodic boundary condition is used for system size L/2 = (even) odd to obtain a singlet
ground state. The spin-gap transition lines obtained are shown in figure 1.

In figure 1, we see that our numerical results in the weak-coupling limit show that the
boundary line is given by Uc = J/2, which is accurately predicted by bosonization and RG
arguments assuming the spin–charge separation. With increasing interaction J , the boundary
line considerably deviates from this behaviour. But in part of the intermediate regime, where
J � 0.2t ∼ 1.0t , the deviation can be also predicted qualitatively by the RG argument
provided the spin–charge coupling term is taken into account [6]. This means that the level-
spectroscopy method enables us to access the elementary excitations described by the effective
field theory at least in the regime of J = 0 ∼ 1.0t . In fact, the phase boundary determined by
the level-spectroscopy method is reliable in the weak- and intermediate-coupling regimes (for
it takes into account the logarithmic corrections); it is not guaranteed in the strong-coupling
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Figure 1. The SU(2) spin-gap transition line of the one-dimensional t–U–J model obtained by the
level-spectroscopy method in the finite systems with L = 10, 12, 14. The dotted line 2U = J is the
critical line predicted by the weak-coupling theory based on the spin–charge separation hypothesis.

(This figure is in colour only in the electronic version)

regime. We see that the finite-size effects become significant when J � 2t . So the results
shown in figure 1 in the strong-coupling regime may not necessary indicate a finite fixed point
Jc. Instead, we believe that the fixed point Jc (the spin gap vanishes when J > Jc), if it exists,
should be ∞. This can be understood by examining the instability of the spin gap against the
backward scattering in the limit when t → 0 and J � U . In this limit, the excitations of the
charge field are strongly suppressed so that φc is pinned at its vacuum expectation, and the
corresponding K ′

c = ( t
t+(U+3J/2)π) )

1/2 → 0 as t → 0. We may bosonize the Heisenberg chain
and treat the kinetic and Coulomb energies as perturbations. (The prime is used to distinguish
the parameters from those appearing in the weak-coupling regime.) The effective Hamiltonian
density is obtained as

Heff = v′
s

2π
[(∂xφs)

2 + (∂xθs)
2] +

g′
s

2π2a
cos

√
8πφs (16)

with v′
s ≈ 3J . Here we neglect the charge excitations as they are all strongly suppressed;

their feedback on the spin excitations is encoded in g′
s = U − 1

2 (1 − λ)J , where λ ≡
〈cos 2

√
2πφc〉 is the vacuum expectation value of the charge coupling. It can be approximated

by � (g′
c/v

′
c)

K ′
c/(1−K ′

c) ≈ 1− as K ′
c → 0. Thus the backward scattering is irrelevant for

g′
s > 0 and relevant for g′

s < 0; the latter case indicates the spin-gap instability. The line
of g′

s = 0 is given by 2U = (1 − λ)J . Because λ → 1− much faster than the increase of
J , (1 − λ)J → 0+ when t/J → 0. Therefore, the spin-gap phase persists but is strongly
suppressed for sufficiently large J .

As an important byproduct of our numerical calculations, we see that there exists a critical
point Uc ≈ 0.35t while for U > Uc the spin gap vanishes, irrespective of J . Notice that the
crossing point where Uc takes the maximal value 0.35t is about J � 1.25t . This numerical
result is reliable, as it just locates in the regime where the finite-size effect is not significant and
the level-spectroscopy method is guaranteed. Anyway, its precise location should not be far
away from this point, because the phase boundary must approach the J -axis at either limit. The
existence of small Uc is quite interesting and is beyond the prediction of the conventional weak-
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coupling theory. It means that in the BCDW phase of a Mott insulator the spin gap driven by the
double occupation and the interplay between kinetic energy and antiferromagnetic exchange
can be significantly suppressed by a fairly small on-site Coulomb repulsion.

Acknowledgments

The authors thank A Nishino, H Ying, H Wang, T Xiang, and Y Yu for discussions and help.
This work was supported by the National Natural Science Foundation of China and the NSF
of Zhejiang Province.

References

[1] Anderson P W 1987 Science 235 1196
[2] Laughlin R B 2002 Preprint cond-mat/0209269
[3] Zhang F C 2003 Phys. Rev. Lett. 90 207002
[4] Haldane F D 1983 Phys. Rev. Lett. 50 1153
[5] Oshikawa M 2000 Phys. Rev. Lett. 84 1535
[6] Dai J, Feng X, Xiang T and Yu Y 2004 unpublished
[7] Japaridze G I and Muller-Hartmann E 2000 Phys. Rev. B 61 9019

Dziurzik C, Japaridze G I, Schadchneider A and Zittartz J 2004 Preprint cond-mat/0402405
[8] Nakamura M 1999 J. Phys. Soc. Japan 68 3123

Nakamura M 2000 Phys. Rev. B 61 16377
[9] Sengupta P, Sandvik A W and Campbell D K 2002 Phys. Rev. B 65 155113

[10] Tsuchiizu M and Furusaki A 2002 Phys. Rev. Lett. 88 056402
[11] Fabrizio M, Gogolin A O and Nersesyan A A 1999 Phys. Rev. Lett. 83 2014
[12] Emery V J 1979 Highly Conducting One-Dimensional Solids ed J Devereese et al (New York: Plenum) p 247
[13] Solyom J 1979 Adv. Phys. 28 201
[14] Voit J 1994 Rep. Prog. Phys. 57 977
[15] Gogolin A O, Nersesyan A A and Tsvelik A M 1998 Bosonization and Strongly Correlated Systems (New York:

Cambridge University Press)
[16] Julien R and Haldane F D M 1983 Bull. Am. Phys. Soc. 28 34
[17] Nomura K 1995 J. Phys. A: Math. Gen. 28 5451

Okamoto K and Nomura K 1992 Phys. Lett. A 169 433
[18] Otsuka H 2000 Phys. Rev. Lett. 84 5572
[19] Cardy J L 1984 J. Phys. A: Math. Gen. 17 L385
[20] Affleck I 1986 Phys. Rev. Lett. 56 746


